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Analysis and Design of Vibration-
Suppressing Systems for Stay Cables

Introduction
Known cases of vibrations
Phenomena and reasons for cable vibrations

Methods for assessment of cable vibrations
Practical formulae for assessment of vibration likelihood
Analytical methods for response predictions  

Design Considerations 

Case Study: Ironton-Russell Bridge
Cable vibration analysis
Vibration-suppressing system
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Second Severn Crossing, UK
Completed 1996

Veterans Memorial Bridge, 
W. Virginia/Ohio, USA, 1990 Faro Bridge, Denmark

Completed 1984
(photograph Olaf Niederlein)

Bridges with Cable 
Vibration Problems

Fred Hartman Bridge, USA
Completed 1995
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Phenomena and reasons for cable vibrations
Sources of Cable Vibrations

Aerodynamic and aeroelastic instabilities
- vortex shedding (low amplitudes – 0.5~1D)
- rain-wind vibrations    (large amplitudes - 1~2 m)
- dry inclined galloping  (large amplitudes - 1~2 m)

Other probable sources of vibrations
- direct wind buffeting on cables  (order of 1D once in 100 years)
- bridge vortex shedding & wind buffeting (large amplitudes - 1~2 m)
- vehicles & pedestrian  (typically small)

Note:  D – cable diameter
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Low structural damping

- structural damping - extremely low 0.03~0.1% of critical, where
aerodynamic damping may be significant, on long cables at 
high wind speeds it could be more than 1%

Low mass – typically 50 - 150 kg/m

Non-linear structural behavior

Phenomena and reasons for cable vibrations
Why stay cables vibrate?
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On long cables, 
low frequencies, 
and very low 
structural damping
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Governing stability parameter

Sc ~ 1Without damper devices Sc is very low

S
Dc =
μζ
ρ 2

Scruton number   Sc

(also called mass-damping parameter) 

μ – mass per liner length
ζ – structural damping
ρ – air density
D – outside diameter
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What do we know of the excitation 
phenomena

Vortex shedding
Rain-wind induced vibrations
Direct wind buffeting
Dry inclined cable galloping
Motion-induced vibrations

Generally understood

Complex phenomena, 
focus of current research
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Instabilities - Vortex Shedding

2s mode                                                         2p mode

[data from Sherbrooke University – courtesy of Dallaire and Laneville, 2005]
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Wind tunnel test including 
water rivulet  effects 

Wind tunnel testing on cable model 

under rain and wind simulationsCables vibration test with moving water rivulet

[courtesy Professor M. Matsumoto]
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Methods for assessment of cable 
vibrations

Practical formulae for assessment of vibration likelihood

Analytical methods for response predictions
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Practical formulae for assessment 
of vibration likelihood

Sc > 2.5Vortex shedding responses would be small if    

Rain-wind oscillations will not occur if

Sc > ?  Other instabilities

Sc > 10

Onset speed of any instability Vonset > Vcriteria
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Analytical Methods for Estimation of 
Cable Vibrations

Vortex Shedding - Ruscheweyh 1986, ESDU 96030

Rain-Wind Vibrations – not available

Dry Inclined Galloping – Macdonald 2005

Tower-Cable-Deck Excitations
Fujino et al 1993, Lilien and Pinto da Costa 1994
Virlogeux 1998, SETRA-LCPC 2002, 

Direct Simulations in Time Domain
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Dry Inclined Galloping
Experimental results, turbulence corrected 
(Macdonald, 2005)

Critical Reynolds number region of instability: 
1.4x105 < Re < 1.8x105
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Critical onset velocity V
Dgal =
⋅Re ν

Dry Inclined Galloping

ν = 1.45 x 10-5 m2/sec – air viscosity

Re = 1.4 x 105 - lowest instability boundary

ξ ρν
μstr
s

n

Z
f

=Minimum damping

(Macdonald 2005)
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Tower-Cable-Deck Interaction

Laboratory tests and full-scale measurements confirm 
excitation of stay cables due motions of deck and towers 
(Andersen at al 1999, Macdonald 2000)

These interactions are a consequence of frequency 
similarity between global bridge modes and the 
fundamental modes of the stay cables
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Tower-Cable-Deck Interaction

This excitation mechanism can cause:

Fatigue of the cable stays 
Discomfort of users on the bridge
Interruption of the normal bridge operations
Failures

All vibration sources must be assessed during the design 
of the bridge.
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Tower-Cable-Deck Interaction
Dynamic Response of Cables

am are generalized displacement amplitudes obtained from numerical
predictions of operational responses to wind, traffic, pedestrian, etc. 

( )Y y y am m
t

m
b

m= −

Anchorage Displacements

Along the cable

Lateral

( )X x x am m
t

m
b

m= −
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rm
m=

Ω
ω1

Modal frequency ratio

Ωm

ω1Fundamental frequency of cable

mth modal frequency of bridge
(estimated from FEA)

Total damping ratio
(ξA = aero, ξS = structural)
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Dynamic Response of Cables
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Motion-Induced Cable Vibrations

Lateral Excitations 
Perpendicular to the Cable Axis
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Motion-Induced Cable Vibrations
Excitation Perpendicular to the Cable Axis 
at Primary Resonance: rm = 1
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Parametric Excitation

Longitudinal Excitations 
Parallel to the Cable Axis
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Although instabilities are possible, there is clear case 
identified on an existing bridge.

The excitation amplitudes (anchorage displacements) 
required for triggering cable vibrations could be large.  
High winds, over prolonged time durations would be 
required to attain an instability condition.

The increased aerodynamic damping at high wind 
speeds is expected to prevent such instabilities from 
reaching significant amplitudes

Parametric Excitation
Excitation Parallel to the Cable Axis at
Parametric Resonance: rm = 1, 2
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Design Considerations

Cable vibration could be controlled via
aerodynamic modifications – effective for rain-wind vibration
increased damping – has limits of how much damping could be 
added, damping is frequency dependent
frequency detuning – cross-ties effective only for close to in-
cable-plane vibrations

Selection of Vibration Suppressing System
depends on the geometry and dynamics of given bridge
cost effectiveness & contractor capabilities 
maintenance and long-term performance   
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Case Study:
the Single Tower Schema
for Ironton-Russell Bridge
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The Ironton-Russell Bridge

To span the Ohio River between Ironton, Ohio and Russell, Kentucky

35 cables in each cable plane - 18 main span, 17 back span.

Longest stay cables in North America: 291 m

Design by Michael Baker Jr. 

Given bridge configuration was not awarded for construction

Schema of the proposed Ironton Russell Bridge
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Cable Vibration Analysis
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Buffeting Response Analysis
Ironton-Russell Bridge

Buffeting response
of 30 modes up to 1.9 Hz
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Response Analysis
Ironton-Russell Bridge
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Comparison of Virlogeux and SETRA formulae 
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Assessment Conclusions
Ironton-Russell Bridge

Stability control demands for Vortex Shedding, Rain-Wind Vibrations 
and Dry Galloping lower than the demands for suppressing 
Motion-Induced Vibrations

Parametric instabilities – unlikely

Motion-induced amplitudes would exceed 0.5D criterion

Largest vibration amplitudes associated with mode 2 of the tower and 
mode 3 of the deck

Vibration mitigation will be required
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Proposed Vibration 
Suppressing System
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Proposed Mitigation Scheme
Ironton-Russell Bridge
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Cross-Tie System to control in-plane motions

External Lateral Dampers (ELDs) to control sway motions.
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External Lateral Dampers
Design by Motioneering Inc.

ELDs will be installed on 10 of the longest cables.
Expected to contribute approximately 4% modal damping 
to the cables. 
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External Lateral Dampers
Design by Motioneering Inc.
Conceptual Design by Genesis Structures
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Cross-tie Tension 
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laddj+1

Wind
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Accumulation of tensions in a crosstie cable
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Estimation of Cross-tie Tension 
Loading Scenarios: 

1) winds normal to bridge; and 

2) winds at skew angles to the along bridge axis  

Loads induced either by:

a) a direct buffeting on the cables; or 

b) from external excitations such as wind buffeting on the bridge 

(motion & parametric excitation will always be present)  

Maximum values do not occur for the same wind direction.

For Scenario (1) tie forces due to (a) are minimal and to (b) maximal

For Scenario (2) tie forces due to (a) are maximal and (b) minimal

For this bridge Scenario (2) was found critical
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Numerical Modeling of Crossties
Ironton-Russell Bridge

1st Vertical cable mode
0.44 Hz

1st Vertical fan mode
1.12 Hz

Frequencies are de-tuned
SAP2000 nonlinear
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R35

Tie 3

Tie 2

Tie 1

ELD L1

Deck
Excitation 

Tower
Excitation 

 

Modeling of Crossties and ELD:
Reduced FEM Cable R35

Reduced FEM of longest cable

Direct buffeting responses on cables included in the analysis.

Springs 
Representing 

Crosstie Stiffness

Dashpot for ELD
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Modeling of Crossties and ELD:
Reduced FEM Cable R35

1st Lateral Mode - 0.46 Hz 1st Vertical - 1.11 Hz

SAP2000 nonlinear
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Modeling of Crossties and ELD:
Typical Response Time Histories
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Case Study Conclusions

Due to the tower motions, excessive lateral sway motions of the 
longest cables were predicted

Excessive in-plane vibration of several cables also predicted, 
due to vertical deck motion

The vibration suppressing system included ELDs and crossties

The proposed mitigation scheme is expected to reduce 
- to less than 0.5D for monthly occurring winds; and 
- to approximately 1D during a design windstorm event 
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General Considerations

Cable vibration assessment should be applied to all cable-stayed 
bridges during their design

This assessment should include all know vibration phenomena VIO,
buffeting, galloping, tower-cable-deck interaction for bridge modes 
that cover the range of possible excitation, e.g. up to 1.5 Hz for wind 
and up to 4 Hz if pedestrian or vehicle traffic vibrations are of concern 

Analytical motion-induced and parametric excitation analysis 
methods provide good initial estimates of cable vibrations

Detailed assessments of displacements prediction could be attained 
via numerical simulations
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